RecSys '16- Proceedings of the 10th ACM Conference on Recommender Systems
Full Citation in the ACM Digital Library
SESSION: Invited Keynotes
Automated Machine Learning in the Wild
Claudia Perlich
Personalization for Google Now: User Understanding and Application to Information Recommendation and Exploration
Shashi Thakur
SESSION: Paper Session 1: Beyond Accuracy
Recommendations with a Purpose
Dietmar Jannach
Gediminas Adomavicius
Recommender Systems for Self-Actualization
Bart P. Knijnenburg
Saadhika Sivakumar
Daricia Wilkinson
A Coverage-Based Approach to Recommendation Diversity On Similarity Graph
Shameem A. Puthiya Parambath
Nicolas Usunier
Yves Grandvalet
A Scalable Approach for Periodical Personalized Recommendations
Zhen Qin
Ish Rishabh
John Carnahan
Multi-Word Generative Query Recommendation Using Topic Modeling
Matthew Mitsui
Chirag Shah
Contrasting Offline and Online Results when Evaluating Recommendation Algorithms
Marco Rossetti
Fabio Stella
Markus Zanker
Adaptive, Personalized Diversity for Visual Discovery
Choon Hui Teo
Houssam Nassif
Daniel Hill
Sriram Srinivasan
Mitchell Goodman
Vijai Mohan
S.V.N. Vishwanathan
Intent-Aware Diversification Using a Constrained PLSA
Jacek Wasilewski
Neil Hurley
SESSION: Paper Session 2: Algorithms I
Field-aware Factorization Machines for CTR Prediction
Yuchin Juan
Yong Zhuang
Wei-Sheng Chin
Chih-Jen Lin
Learning Hierarchical Feature Influence for Recommendation by Recursive Regularization
Jie Yang
Zhu Sun
Alessandro Bozzon
Jie Zhang
Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence
Dawen Liang
Jaan Altosaar
Laurent Charlin
David M. Blei
Local Item-Item Models For Top-N Recommendation
Evangelia Christakopoulou
George Karypis
Asynchronous Distributed Matrix Factorization with Similar User and Item Based Regularization
Bikash Joshi
Franck Iutzeler
Massih-Reza Amini
Query-based Music Recommendations via Preference Embedding
Chih-Ming Chen
Ming-Feng Tsai
Yu-Ching Lin
Yi-Hsuan Yang
SESSION: Paper Session 3: Cold Start and Hybrid Methods
Joint User Modeling across Aligned Heterogeneous Sites
Xuezhi Cao
Yong Yu
Fifty Shades of Ratings: How to Benefit from a Negative Feedback in Top-N Recommendations Tasks
Evgeny Frolov
Ivan Oseledets
Latent Factor Representations for Cold-Start Video Recommendation
Sujoy Roy
Sharat Chandra Guntuku
Ask the GRU
: Multi-task Learning for Deep Text Recommendations
Trapit Bansal
David Belanger
Andrew McCallum
Addressing Cold Start for Next-song Recommendation
Szu-Yu Chou
Yi-Hsuan Yang
Jyh-Shing Roger Jang
Yu-Ching Lin
Accuracy and Diversity in Cross-domain Recommendations for Cold-start Users with Positive-only Feedback
Ignacio Fernández-Tobías
Paolo Tomeo
Iván Cantador
Tommaso Di Noia
Eugenio Di Sciascio
SESSION: Paper Session 4: User in the Loop
HCI for Recommender Systems: the Past, the Present and the Future
André Calero Valdez
Martina Ziefle
Katrien Verbert
Human-Recommender Systems: From Benchmark Data to Benchmark Cognitive Models
Patrick Shafto
Olfa Nasraoui
Gaze Prediction for Recommender Systems
Qian Zhao
Shuo Chang
F. Maxwell Harper
Joseph A. Konstan
Exploring the Value of Personality in Predicting Rating Behaviors: A Study of Category Preferences on MovieLens
Raghav Pavan Karumur
Tien T. Nguyen
Joseph A. Konstan
Pairwise Preferences Based Matrix Factorization and Nearest Neighbor Recommendation Techniques
Saikishore Kalloori
Francesco Ricci
Marko Tkalcic
Observing Group Decision Making Processes
Amra Delic
Julia Neidhardt
Thuy Ngoc Nguyen
Francesco Ricci
Laurens Rook
Hannes Werthner
Markus Zanker
ExpLOD: A Framework for Explaining Recommendations based on the Linked Open Data Cloud
Cataldo Musto
Fedelucio Narducci
Pasquale Lops
Marco De Gemmis
Giovanni Semeraro
The Value of Online Customer Reviews
Georgios Askalidis
Edward C. Malthouse
SESSION: Paper Session 5: Trust and Reliability
Mechanism Design for Personalized Recommender Systems
Qingpeng Cai
Aris Filos-Ratsikas
Chang Liu
Pingzhong Tang
Mood-Sensitive Truth Discovery For Reliable Recommendation Systems in Social Sensing
Jermaine Marshall
Dong Wang
Crowd-Based Personalized Natural Language Explanations for Recommendations
Shuo Chang
F. Maxwell Harper
Loren Gilbert Terveen
SESSION: Paper Session 6: Applications
Domain-Aware Grade Prediction and Top-n Course Recommendation
Asmaa Elbadrawy
George Karypis
Deep Neural Networks for YouTube Recommendations
Paul Covington
Jay Adams
Emre Sargin
Optimizing Similar Item Recommendations in a Semi-structured Marketplace to Maximize Conversion
Yuri M. Brovman
Marie Jacob
Natraj Srinivasan
Stephen Neola
Daniel Galron
Ryan Snyder
Paul Wang
A Package Recommendation Framework for Trip Planning Activities
Idir Benouaret
Dominique Lenne
SESSION: Paper Session 7: Past, Present & Future
Recommender Systems with Personality
Amos Azaria
Jason Hong
Past, Present, and Future of Recommender Systems: An Industry Perspective
Xavier Amatriain
Justin Basilico
Algorithms Aside: Recommendation As The Lens Of Life
Tamas Motajcsek
Jean-Yves Le Moine
Martha Larson
Daniel Kohlsdorf
Andreas Lommatzsch
Domonkos Tikk
Omar Alonso
Paolo Cremonesi
Andrew Demetriou
Kristaps Dobrajs
Franca Garzotto
Ayşe Göker
Frank Hopfgartner
Davide Malagoli
Thuy Ngoc Nguyen
Jasminko Novak
Francesco Ricci
Mario Scriminaci
Marko Tkalcic
Anna Zacchi
Behaviorism is Not Enough: Better Recommendations through Listening to Users
Michael D. Ekstrand
Martijn C. Willemsen
SESSION: Paper Session 8: Deep Learning
Meta-Prod2Vec: Product Embeddings Using Side-Information for Recommendation
Flavian Vasile
Elena Smirnova
Alexis Conneau
Convolutional Matrix Factorization for Document Context-Aware Recommendation
Donghyun Kim
Chanyoung Park
Jinoh Oh
Sungyoung Lee
Hwanjo Yu
Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations
Balázs Hidasi
Massimo Quadrana
Alexandros Karatzoglou
Domonkos Tikk
SESSION: Paper Session 9: Contextual Challenges
The Contextual Turn: from Context-Aware to Context-Driven Recommender Systems
Roberto Pagano
Paolo Cremonesi
Martha Larson
Balázs Hidasi
Domonkos Tikk
Alexandros Karatzoglou
Massimo Quadrana
Discovering What You're Known For: A Contextual Poisson Factorization Approach
Haokai Lu
James Caverlee
Wei Niu
TAPER: A Contextual Tensor-Based Approach for Personalized Expert Recommendation
Hancheng Ge
James Caverlee
Haokai Lu
Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling
Yiming Liu
Xuezhi Cao
Yong Yu
Modelling Contextual Information in Session-Aware Recommender Systems with Neural Networks
Bartłomiej Twardowski
Getting the Timing Right: Leveraging Category Inter-purchase Times to Improve Recommender Systems
Denis Vuckovac
Julia Wamsler
Alexander Ilic
Martin Natter
MAPS: A Multi Aspect Personalized POI Recommender System
Ramesh Baral
Tao Li
SESSION: Paper Session 10: Social Perspective
Recommending New Items to Ephemeral Groups Using Contextual User Influence
Elisa Quintarelli
Emanuele Rabosio
Letizia Tanca
Guided Walk: A Scalable Recommendation Algorithm for Complex Heterogeneous Social Networks
Roy Levin
Hassan Abassi
Uzi Cohen
STAR: Semiring Trust Inference for Trust-Aware Social Recommenders
Peixin Gao
Hui Miao
John S. Baras
Jennifer Golbeck
Vista: A Visually, Socially, and Temporally-aware Model for Artistic Recommendation
Ruining He
Chen Fang
Zhaowen Wang
Julian McAuley
Representation Learning for Homophilic Preferences
Trong T. Nguyen
Hady W. Lauw
SESSION: Paper Session 11: Algorithms II
Personalized Recommendations using Knowledge Graphs: A Probabilistic Logic Programming Approach
Rose Catherine
William Cohen
Efficient Bayesian Methods for Graph-based Recommendation
Ramon Lopes
Renato Assunção
Rodrygo L.T. Santos
Using Navigation to Improve Recommendations in Real-Time
Chao-Yuan Wu
Christopher V. Alvino
Alexander J. Smola
Justin Basilico
Bayesian Low-Rank Determinantal Point Processes
Mike Gartrell
Ulrich Paquet
Noam Koenigstein
Recommending Repeat Purchases using Product Segment Statistics
Suvodip Dey
Pabitra Mitra
Kratika Gupta
Bayesian Personalized Ranking with Multi-Channel User Feedback
Babak Loni
Roberto Pagano
Martha Larson
Alan Hanjalic
SESSION: Industry Session 1
Mendeley: Recommendations for Researchers
Saúl Vargas
Maya Hristakeva
Kris Jack
When Recommendation Systems Go Bad
Evan Estola
News Recommendations at scale at Bloomberg Media: Challenges and Approaches
Dhaval Shah
Pramod Koneru
Parth Shah
Rohit Parimi
Marsbot: Building a Personal Assistant
Max Sklar
Music Personalization at Spotify
Kurt Jacobson
Vidhya Murali
Edward Newett
Brian Whitman
Romain Yon
SESSION: Industry Session 2
Recommending for the World
Justin Basilico
Yves Raimond
The Exploit-Explore Dilemma in Music Recommendation
Oscar Celma
Feature Selection For Human Recommenders
Katherine A. Livins
Considering Supplier Relations and Monetization in Designing Recommendation Systems
Jan Krasnodebski
John Dines
A Cross-Industry Machine Learning Framework with Explicit Representations
Denise Ichinco
Sahil Zubair
Jana Eggers
Nathan Wilson
SESSION: Industry Session 3
Leveraging a Graph-Powered, Real-Time Recommendation Engine to Create Rapid Business Value
Adam Anthony
Yu-Keng Shih
Ruoming Jin
Yang Xiang
Hypothesis Testing: How to Eliminate Ideas as Soon as Possible
Roman Zykov
Recommending the World's Knowledge: Application of Recommender Systems at Quora
Lei Yang
Xavier Amatriain
Multi-corpus Personalized Recommendations on Google Play
Levent Koc
Cyrus Master
Item-to-item Recommendations at Pinterest
Stephanie Kaye Rogers
DEMONSTRATION SESSION: Demonstrations
A Recommender System to tackle Enterprise Collaboration
Gabriel de Souza P. Moreira
Gilmar Souza
Conversational Recommendation System with Unsupervised Learning
Yueming Sun
Yi Zhang
Yunfei Chen
Roger Jin
Powering Content Discovery through Scalable, Realtime Profiling of Users' Content Preferences
Ido Tamir
Roy Bass
Guy Kobrinsky
Baruch Brutman
Ronny Lempel
Yoram Dayagi
RecExp: A Semantic Recommender System with Explanation Based on Heterogeneous Information Network
Jiawei Hu
Zhiqiang Zhang
Jian Liu
Chuan Shi
Philip S. Yu
Bai Wang
Topical Semantic Recommendations for Auteur Films
Christian Rakow
Andreas Lommatzsch
Till Plumbaum
T-RecS: A Framework for a Temporal Semantic Analysis of the ACM Recommender Systems Conference
Fedelucio Narducci
Pierpaolo Basile
Pasquale Lops
Marco De Gemmis
Giovanni Semeraro
SESSION: Workshops and Challenge
4th Workshop on Emotions and Personality in Personalized Systems (EMPIRE)
Marko Tkalcic
Berardina De Carolis
Marco de Gemmis
Andrej Kosir
Engendering Health with Recommender Systems
David Elsweiler
Bernd Ludwig
Alan Said
Hanna Schaefer
Christoph Trattner
RecProfile '16: Workshop on Profiling User Preferences for Dynamic, Online, and Real-Time recommendations
Rani Nelken
RecSys'16 Joint Workshop on Interfaces and Human Decision Making for Recommender Systems
Peter Brusilovsky
Alexander Felfernig
Pasquale Lops
John O'Donovan
Giovanni Semeraro
Nava Tintarev
Martijn Willemsen
RecSys'16 Workshop on Deep Learning for Recommender Systems (DLRS)
Alexandros Karatzoglou
Balázs Hidasi
Domonkos Tikk
Oren Sar-Shalom
Haggai Roitman
Bracha Shapira
RecTour 2016: Workshop on Recommenders in Tourism
Daniel R. Fesenmaier
Tsvi Kuflik
Julia Neidhardt
Third Workshop on New Trends in Content-based Recommender Systems (CBRecSys 2016)
Toine Bogers
Marijn Koolen
Cataldo Musto
Pasquale Lops
Giovanni Semeraro
LSRS'16: Workshop on Large-Scale Recommender Systems
Tao Ye
Danny Bickson
Denis Parra
3rd Workshop on Recommendation Systems for Television and Online Video (RecSysTV 2016)
Jan Neumann
John Hannon
Claudio Riefolo
Hassan Sayyadi
RecSys Challenge 2016: Job Recommendations
Fabian Abel
András Benczúr
Daniel Kohlsdorf
Martha Larson
Róbert Pálovics
TUTORIAL SESSION: Tutorials
Group Recommender Systems
Ludovico Boratto
Matrix and Tensor Decomposition in Recommender Systems
Panagiotis Symeonidis
People Recommendation Tutorial
Ido Guy
Luiz Pizzato
Tutorial: Lessons Learned from Building Real-life Recommender Systems
Xavier Amatriain
Deepak Agarwal
SESSION: Doctoral Symposium
Context-Based IDE Command Recommender System
Marko Gasparic
Generating Pseudotransactions for Improving Sparse Matrix Factorization
Agung Toto Wibowo
Gray Sheep, Influential Users, User Modeling and Recommender System Adoption by Startups
Abhishek Srivastava
Increasing the Trustworthiness of Recommendations by Exploiting Social Media Sources
Catalin-Mihai Barbu
Mining Information for the Cold-Item Problem
Fatemeh Pourgholamali
Personalized Support for Healthy Nutrition Decisions
Hanna Schäfer
Proactive Recommendation Delivery
Adem Sabic
Recommender Systems from an Industrial and Ethical Perspective
Dimitris Paraschakis